June 1, 2023
A global inventory of photovoltaic solar energy generating units – Nature.com

A global inventory of photovoltaic solar energy generating units – Nature.com

  • 1.

    Statistical Review of World Energy 2018 (BP plc., 2018).

  • 2.

    World Energy Outlook 2018 (International Energy Agency, 2018).

  • 3.

    Renewable Capacity Statistics 2019 (International Renewable Energy Agency, 2019).

  • 4.

    Byers, L. et al. A Global Database of Power Plants (World Resources Institute, 2018).

  • 5.

    Barbose, G. & Darghouth, N. Tracking the Sun (Berkeley Lab, 2019); https://openpv.nrel.gov/tracking-the-sun

  • 6.

    Yu, J., Wang, Z., Majumdar, A. & Rajagopal, R. DeepSolar: a machine learning framework to efficiently construct a solar deployment database in the United States. Joule 2, 2605–2617 (2018).

    Article 

    Google Scholar 

  • 7.

    Hou, X. et al. Solarnet: a deep learning framework to map solar plants in China from satellite imagery. In ICLR 2020 Workshop on Tackling Climate Change with Machine Learning (ICLR, 2020); https://www.climatechange.ai/papers/iclr2020/6.html

  • 8.

    Platts, S. G. World Electric Power Plant Database (2018); https://www.spglobal.com/platts/en/products-services/electric-power/world-electric-power-plants-database

  • 9.

    Electric Plants (IHSMarkit, 2020); https://catalogue.datalake.ihsmarkit.com/

  • 10.

    Renewables 2019 (International Energy Agency, 2019); https://www.iea.org/reports/renewables-2019

  • 11.

    Bolinger, M., Seel, J. & Robson, D. Utility-Scale Solar: Empirical Trends in Project Technology, Cost, Performance, and PPA Pricing in the United States (Berkeley Lab, 2019).

  • 12.

    Fukushima, K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980).

    CAS 
    Article 

    Google Scholar 

  • 13.

    LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article 

    Google Scholar 

  • 14.

    Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Proc. 25th International Conference on Neural Information Processing Systems (NIPS’12) Vol. 1, 1097–1105 (Curran Associates Inc., 2012).

  • 15.

    Zhang, Z., Liu, Q. & Wang, Y. Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15, 749–753 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Ishii, T. et al. Detection by classification of buildings in multispectral satellite imagery. In 2016 23rd International Conference on Pattern Recognition (ICPR) 3344–3349 (IEEE, 2016).

  • 17.

    Audebert, N., Le Saux, B. & Lefévre, S. Beyond RGB: very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 140, 20–32 (2018).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Zuo, J., Xu, G., Fu, K., Sun, X. & Sun, H. Aircraft type recognition based on segmentation with deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 15, 282–286 (2018).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Bentes, C., Velotto, D. & Tings, B. Ship classification in TerraSAR-X images with convo lutional neural networks. IEEE J. Ocean. Eng. 43, 258–266 (2018).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Gray, M., Watson, L., Ljungwaldh, S. & Morris, E. Nowhere to Hide: Using Satellite Imagery to Estimate the Utilisation of Fossil Fuel Power Plants (Carbon Tracker, 2018); https://www.carbontracker.org/reports/nowhere-to-hide/

  • 21.

    Wang, A. X., Tran, C., Desai, N., Lobell, D. & Ermon, S. Deep transfer learning for crop yield prediction with remote sensing data. In Proc. 1st ACM SIGCAS Conference on Computing and Sustainable Societies 50 (ACM, 2018).

  • 22.

    Wang, H. et al. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 188, 56–70 (2017).

    Article 

    Google Scholar 

  • 23.

    Imamoglu, N., Kimura, M., Miyamoto, H., Fujita, A. & Nakamura, R. Solar power plant detection on multi-spectral satellite imagery using weakly-supervised CNN with feedback features and m-PCNN fusion. Preprint at https://arXiv.org/abs/1704.06410 (2017).

  • 24.

    Malof, J. M., Bradbury, K., Collins, L. M. & Newell, R. G. Automatic detection of solar photovoltaic arrays in high resolution aerial imagery. Appl. Energy 183, 229–240 (2016).

    Article 

    Google Scholar 

  • 25.

    Camilo, J. A., Wang, R., Collins, L. M., Bradbury, K. & Malof, J. M. Application of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery. Preprint at https://arxiv.org/abs/1801.04018 (2018).

  • 26.

    Badrinarayanan, V., Kendall, A. & Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. Preprint at https://arxiv.org/abs/1511.00561 (2015).

  • 27.

    Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (2015); preprint at https://arxiv.org/pdf/1409.1556.pdf

  • 28.

    Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. Preprint at https://arxiv.org/abs/1505.04597 (2015).

  • 29.

    He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Preprint at https://arxiv.org/abs/1512.03385 (2015).

  • 30.

    Wu, G. C. et al. Power of Place: Land Conservation and Clean Energy Pathways for California (The Nature Conservancy, 2019).

  • 31.

    Konadu, D. et al. Land use implications of future energy system trajectories: the case of the UK 2050 carbon plan. Energy Policy 86, 328–337 (2015).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Turconi, R., Boldrin, A. & Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565 (2013).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Hernandez, R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article 

    Google Scholar 

  • 34.

    Bukhary, S., Ahmad, S. & Batista, J. Analyzing land and water requirements for solar deployment in the southwestern United States. Renew. Sustain. Energy Rev. 82, 3288–3305 (2018).

    Article 

    Google Scholar 

  • 35.

    Dias, L., Gouveia, J. P., Loureno, P. & Seixas, J. Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy 81, 725–735 (2019).

    Article 

    Google Scholar 

  • 36.

    Grodsky, S. M. & Hernandez, R. R. Reduced ecosystem services of desert plants from ground-mounted solar energy development. Nat. Sustain. 3, 1036–1043 (2020).

    Article 

    Google Scholar 

  • 37.

    Carlisle, J. E., Kane, S. L., Solan, D., Bowman, M. & Joe, J. C. Public attitudes regarding large-scale solar energy development in the U.S. Renew. Sustain. Energy Rev. 48, 835–847 (2015).

    Article 

    Google Scholar 

  • 38.

    Mulvaney, D. Identifying the roots of green civil war over utility-scale solar energy projects on public lands across the American southwest. J. Land Use Sci. 12, 493–515 (2017).

    Article 

    Google Scholar 

  • 39.

    Lamarche, C. et al. Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community. Remote Sens. 9, 36 (2017).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Cherlet, M. et al. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management (Publications Office of the European Union, 2018).

  • 41.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS 
    Article 

    Google Scholar 

  • Source: https://www.nature.com/articles/s41586-021-03957-7

    Leave a Reply

    Your email address will not be published. Required fields are marked *